
3. daisy:320 (Fithen, William L.)

6. file:///Users/wlf/Workspaces/Eclipse-3.1/swa-content/documents/html-upload/knowledge/guidelines/buffer-overflow.html#Farrow-02

7. daisy:8 (Tools)

8. Understanding the skills of your adversaries is critical. Exactly how much does your adversary control? If your adversary
controls no input, then the buffer overflow is not a vulnerability (though it remains a defect). If your adversary controls
more aspects of input, then the risk of a successful exploitation of a buffer overflow increases, eventually reaching the
point of practically guaranteeing a compromise.

9. #refs

Ensure that the Bounds of No Memory Region Are Violated
William L. Fithen, Software Engineering Institute [vita3]

Copyright © 2005 Carnegie Mellon University

2005-10-03

Violation of memory bounds can introduce vulnerability.

Description

Buffer overflows occur when data are written or read outside of the boundaries of the memory allocated
to a particular data structure [Farrow 026]. C and C++ are susceptible to buffer overflows because these
languages

• define strings as null-terminated arrays of characters (as opposed to languages where strings
explicitly carry their length around with them),

• do not perform implicit bounds checking, and

• provide standard library functions that operate on strings but which do not require enough input
information to enforce bounds checking.

Depending on the location of the memory and the size of the overflow, a buffer overflow can occur
without impact to normal program operations, can result in anomalous behavior or data corruption, or
can lead to abnormal program termination (possibly causing a denial of service).

Buffer overflows are troublesome in that they can go undetected during the development and testing of
software applications. C and C++ compilers do not always identify defects that can lead to buffer
overflows during compilation or produce code that reports out-of-bounds reads or writes at runtime.
Static analysis tools can, in some cases, detect code likely to allow buffer overflows and dynamic
analysis tools can be used to discover buffer overflows with 100% reliability but only for cases where
the test data actually precipitates an overflow [BSI:Tools7].

All buffer overflows are defects; not all buffer overflows lead to software vulnerabilities. However, a
buffer overflow can lead to a vulnerability when an attacker can manipulate user-controlled inputs to
violate an explicit or implicit security policy8. There are, for example, well-known techniques for
overwriting frames in the stack to execute arbitrary code [Aleph One 969]. Buffer overflows can also be
exploited in heap or static memory areas by overwriting data structures in adjacent memory. A buffer
overflow occurs when a data store operation extends beyond the bounds of the targeted memory region.
This alters surrounding memory, creating the potential for those alterations to be influenced by an
adversary.

Ensure that the Bounds of No Memory Region Are Violated 1
ID: 323 | Versie: 4 | Datum: 4/04/06 14:18:49

daisy:320
file:///Users/wlf/Workspaces/Eclipse-3.1/swa-content/documents/html-upload/knowledge/guidelines/buffer-overflow.html#Farrow-02
daisy:8
#refs

10. daisy:75 (Coding Practices)

11. daisy:76 (Coding Rules)

12. #refs

This is the single largest—and today probably the most damaging—class of vulnerability in the
CERT/CC database. In practice nearly all of these types of vulnerabilities occur in C or C++, and many
of them are directly attributable to the use of functions like strcpy, strcat, sprintf, and similar functions
instead of the corresponding bounded versions strncpy, strncat, and snprintf [BSI:Knowledge:Coding
Practices10, BSI:Knowledge:Coding Rules11].

Classifying buffer overflow vulnerabilities is difficult because of the broad number of attacks that are
considered buffer overflows. The minimum requirement for a vulnerability to be a buffer overflow
vulnerability is that it is exploited by causing a vulnerable program to write outside the bounds of a data
structure.

One way to classify a buffer overflow, therefore, is the location of the buffer that is overwritten. Even
this is somewhat confused because of the different ways process memory can be organized, but since
data usually exist in either the stack, heap, or data segments we can generally classify buffer
vulnerabilities based on which of those locations contains the vulnerable buffer.

A successful exploit must overflow a buffer for a purpose. The purpose may be to modify the value of a
variable, data pointer, function pointer, or return address on the stack. Modification of a variable may be
used to change some behavior of a program, possibly making it vulnerable to further attack.
Modification of a data pointer, function pointer, or return address can all be used to execute arbitrary
code.

For the exploit to execute code, the code must already exist in the address space of the vulnerable
process (presumably in the code segment) or it must be injected. Code could be injected into the stack,
heap, or data segments. Where the code is injected can be relevant if one or more memory segments is
made to be non-executable [Hoglund 0412].

• Buffer underflows are also the same class but are fairly rare and can occur only in languages that can
do negative pointer arithmetic or allow negative array indices (such as C and C++).

• Buffer overflows can occur in languages besides C and C++.

• In some dialects of FORTRAN, buffer overflows can occur when two adjacent arrays of the
same type exist.

• Some older versions of TeX allocated large static arrays to use as dynamic memory pools. Buffer
overflows could potentially occur within that type of array, since the language would interpret any
access into the array as legal.

• Bounds violation can occur on read or write operations. The term buffer overflow refers only to the
write version.

• There have been read-type bounds violation vulnerabilities, but no one has named them; they
tend to be classed as "leaks."

Applicable Context
• The implementation programming language does not enforce memory bounds.

• The program does not check its own memory bounds.

• An adversary can cause the program to read or write memory outside of those bounds.

Ensure that the Bounds of No Memory Region Are Violated 2
ID: 323 | Versie: 4 | Datum: 4/04/06 14:18:49

daisy:75
daisy:75
daisy:76
#refs

30. daisy:75 (Coding Practices)

32. daisy:76 (Coding Rules)

33. daisy:8 (Tools)

42. #refs

43. #refs

44. #refs

Impacts Being Mitigated
• Impact #1:

• Minimally: The minimal impact of a buffer overflow is nil. It is entirely possible for a buffer
overflow to be either unexploitable or have no effect. The kind of buffer overflow that has no
impact is one where corrupted memory is never subsequently accessed. In that case, the buffer
overflow might never be apparent.

• Maximally: The maximal impact of a buffer overflow depends on the technicality of the
overflow and how it can be exploited. In every case memory is corrupted and then used in some
fashion that results in some degree of incorrect program behavior. This behavior can range from
introducing subtle logic errors to the execution of arbitrary adversary-supplied machine code.

Security Policies to be Preserved
• Policy #1

• Developers expect program memory to retain integrity throughout program execution.

How to Recognize this Defect
• Look for the use of functions, especially those provided by others, that accept arrays (e.g., char *)

and do not also accept an additional parameter to provide the length of the array.

• Look for iterations over arrays to ensure that array bounds are not violated (negative or positive).
Pay special attention to "fence post" errors.

• Look for conversions to and from pointers that obfuscate the target of the pointer. Such type
ambiguity can lead to memory bounds violations or a number of other kinds of errors.

• [BSI:Knowledge:Coding Practices30]

• [BSI:Knowledge:Coding Rules32]

• [BSI:Tools33]

Mitigation Advice

To Engineers:
• Efficacy: HIGH

• All of the following should be observed:

• All array boundaries should be checked.

• All pointer-based memory accesses should be checked to ensure they access the intended
memory region.

Much has been written along these lines [Howard 0542, Hoglund 0443, Simon 0144, Wheeler 0445,

Ensure that the Bounds of No Memory Region Are Violated 3
ID: 323 | Versie: 4 | Datum: 4/04/06 14:18:49

daisy:75
daisy:76
daisy:8
#refs
#refs
#refs
#refs

45. #refs

46. #refs

50. http://www.mcs.csuhayward.edu/%7Esimon/security/boflo.html

1. http://www.sei.cmu.edu/about/legal-permissions.html

Aleph One 9646].

References

[Aleph-One 96] Aleph One. "Smashing the Stack for Fun and
Profit." Phrack Magazine 7, 49 (1996): File 14 of
16. http://www.phrack.org/phrack/49/P49-14.

[Farrow 02] Farrow, Rik. What Are Buffer Overflows?
http://www.watchguard.com/infocenter/editorial/135136.asp
(2002).

[Hoglund 04] Hoglund, Greg & McGraw, Gary. Exploiting
Software: How to Break Code. Boston, MA:
Addison-Wesley, 2004.

[Howard 05] Howard, Michael; LeBlanc, David; & Viega, John.
19 Deadly Sins of Software Security. Emeryville,
CA: McGraw-Hill Osborne Media, 2005.

[Simon 01] Simon, Istvan. A Comparative Analysis of Methods
of Defense against Buffer Overflow Attacks.
http://www.mcs.csuhayward.edu/~simon/security/boflo.html50

(2001).

[Wheeler 04] Wheeler, David A. Countering buffer overflows.
http://www.ibm.com/developerworks/linux/library/l-sp4.html?ca=dgr-lnxw09SecOverflow
(2004).

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Velden

Ensure that the Bounds of No Memory Region Are Violated 4
ID: 323 | Versie: 4 | Datum: 4/04/06 14:18:49

#refs
http://www.phrack.org/phrack/49/P49-14
http://www.watchguard.com/infocenter/editorial/135136.asp
http://www.mcs.csuhayward.edu/%7Esimon/security/boflo.html
http://www.ibm.com/developerworks/linux/library/l-sp4.html?ca=dgr-lnxw09SecOverflow
http://www.sei.cmu.edu/about/legal-permissions.html

Naam Waarde

Copyright Holder SEI

Velden

Naam Waarde

is-content-area-overview false

Content Areas Knowledge/Guidelines

SDLC Relevance Implementation

Workflow State Publishable

Ensure that the Bounds of No Memory Region Are Violated 5
ID: 323 | Versie: 4 | Datum: 4/04/06 14:18:49

